Separation and enrichment of trace ractopamine in biological samples by uniformly-sized molecularly imprinted polymers

نویسندگان

  • Ya Li
  • Qiang Fu
  • Meng Liu
  • Yuan-Yuan Jiao
  • Wei Du
  • Chong Yu
  • Jing Liu
  • Chun Chang
  • Jian Lu
چکیده

In order to prepare a high capacity packing material for solid-phase extraction with specific recognition ability of trace ractopamine in biological samples, uniformly-sized, molecularly imprinted polymers (MIPs) were prepared by a multi-step swelling and polymerization method using methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, and toluene as a porogen respectively. Scanning electron microscope and specific surface area were employed to identify the characteristics of MIPs. Ultraviolet spectroscopy, Fourier transform infrared spectroscopy, Scatchard analysis and kinetic study were performed to interpret the specific recognition ability and the binding process of MIPs. The results showed that, compared with other reports, MIPs synthetized in this study showed high adsorption capacity besides specific recognition ability. The adsorption capacity of MIPs was 0.063 mmol/g at 1 mmol/L ractopamine concentration with the distribution coefficient 1.70. The resulting MIPs could be used as solid-phase extraction materials for separation and enrichment of trace ractopamine in biological samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of a nanoporous molecularly imprinted polymers for dibutyl Phthalate extracted from Trichoderma Harzianum

In this study, molecularly imprinted polymers were synthesized for dibutyl phthalate as a bioactive chemical compound with antifungal activity which produced by Trichoderma Harzianum (JX1738521). The molecularly imprinted polymers were synthesized via precipitation polymerization method from methacrylic acid, dibutyl phthalate and trimetylolpropantrimethacrylate as a functional monomer, templat...

متن کامل

Separation of ‎STIGMA STEROL using magnetic molecularly imprinted nanopolymer fabricated by sol-gel method

Background & Aims: Magnetically molecularly imprinted polymers (MMIPs) are assumed as kind of sorbent polymers ‎which can separate or determine bioactive compounds from environment fast and specifically.  ‎Magnetic properties, stability at various conditions (temperature , ionic strength and pH) and selective ‎function are among the advantages of these polymers in determin...

متن کامل

Are molecularly imprinted polymers (MIPs) beneficial in detection and determination of mycotoxins in cereal samples?

The process of matrix clean-up and extraction of analytes has a significant influence on the detection and determination of the analyte, especially in trace amounts. Molecularly imprinted polymers (MIPs) are solid particles that can absorb specific molecules regarding the template molecule used in the synthesis process of each type of MIP. As a result, they can be used in more effective and mor...

متن کامل

The Multi-Template Molecularly Imprinted Polymer Based on SBA-15 for Selective Separation and Determination of Panax notoginseng Saponins Simultaneously in Biological Samples

The feasible, reliable and selective multi-template molecularly imprinted polymers (MT-MIPs) based on SBA-15 (SBA-15@MT-MIPs) for the selective separation and determination of the trace level of ginsenoside Rb1 (Rb1), ginsenoside Rg1 (Rg1) and notoginsenoside R1 (R1) simultaneously from biological samples were developed. The polymers were constructed by SBA-15 as support, Rb1, Rg1, R1 as multi-...

متن کامل

Molecularly Imprinted Stir Bar Sorptive Extraction Coupled with High-Performance Liquid Chromatography for Trace Analysis of Diclofenac in Different Real Samples

A novel molecularly imprinted polymer-coated stir bar has been used to selectively extract diclofenac (DFC) directly from real samples. DFC was used as template molecule for preparation of MIP coating. The effect of different parameters on the extraction efficiency were studied and the optimum conditions were established as: the absorption and desorption times were fixed at 10 min, stirring...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012